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Abstract: In this paper we present our hardware design and control approaches for a mobile ma-
nipulation platform used in Challenge 2 of the MBZIRC 2020 competition. In this challenge, a team
of UAVs and a single UGV collaborate in an autonomous, wall-building scenario, motivated by con-
struction automation and large-scale robotic 3D printing. The robots must be able, autonomously,
to detect, manipulate, and transport bricks in an unstructured, outdoor environment. Our control
approach is based on a state machine that dictates which controllers are active at each stage of the
Challenge. In the first stage our UGV uses visual servoing and local controllers to approach the
target object without considering its orientation. The second stage consists of detecting the object’s
global pose using OpenCV-based processing of RGB-D image and point-cloud data, and calculating
an alignment goal within a global map. The map is built with Google Cartographer and is based
on onboard LIDAR, IMU, and GPS data. Motion control in the second stage is realized using the
ROS Move Base package with Time-Elastic Band trajectory optimization. Visual servo algorithms
guide the vehicle in local object-approach movement and the arm in manipulating bricks. To ensure
a stable grasp of the brick’s magnetic patch, we developed a passively-compliant, electromagnetic
gripper with tactile feedback. Our fully-autonomous UGV performed well in Challenge 2 and in
post-competition evaluations of its brick pick-and-place algorithms.
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1. Introduction
The focus of many robotics competitions in recent years has been on tasks closely related to
warehouse automation or service robotics. Such competitions include the Amazon Picking Challenge
(Correll et al., 2018) and the RoboCup@Home challenge (Matamoros et al., 2019), which both
emphasize object-detection and grasp-planning for pick-and-place tasks. The Mohamed Bin Zayed
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Figure 1. MBZIRC Challenge 2 scenario: A UGV must autonomously find a stack of bricks (left), select and
pick up a brick, transport it to a building site marked with a checkered pattern, and place it precisely on the
building location (right).

International Robotics Challenge (MBZIRC, 2020) builds upon these ideas and extends the com-
plexity by placing the robots outdoors in a relatively unstructured environment. For the 2020 edition
of MBZIRC, one of the challenges emulates a construction site where a heterogeneous multi-robot
team, consisting of multiple, unmanned, aerial vehicles (UAVs) and a single, unmanned, ground
vehicle (UGV) must build a wall with a predefined blueprint.

The wall-building scenario can be easily generalized to other real-world problems involving
navigation, object perception, motion, grasp-planning and task-planning. Warehouse automation
and search-and-rescue missions are a few among a plethora of such everyday work environments that
have not yet been automated. As with all robotics competitions, the challenges presented should be
viewed as a validation of robotic progress and its adaptability to unstructured environments with
unmodeled disturbances, and outside of laboratory conditions. The objective of these competitions
is to provide a challenge to the robotics research community, to test and validate the existing state
of the art, to identify problem areas, and to accelerate scientific progress. No less importantly, the
competition can be seen as an opportunity for the less-prominent research groups to gain visibility.

Heterogeneous multi-robot teams constitute a well-researched concept with a focus on coordina-
tion and planning, as discussed in our earlier paper (Krizmancic et al., 2020). Herein, the focus is
on the problems faced by the UGV in the Challenge 2 of MBZIRC 2020. As stated in the challenge
rules, the UGV must find the stacks of bricks, which consist of bricks of different colors, transport
them to the building site marked by a distinctive pattern on the ground (see Figure 1), and build
a wall with a specified brick arrangement. Points are awarded for the correct arrangement and
precision of bricklaying and, most importantly, for autonomous task execution.

To complete Challenge 2 the UGV must solve several, nested problems. First, the UGV must
navigate precisely in an outdoor environment, finding key locations, transporting bricks, and
avoiding brick stacks and any already-constructed wall. In addition, the UGV must autonomously
detect the brick stack, a single, target brick atop the stack, and, finally the construction location.
Once these tasks are handled, the UGV must accurately determine the grasping point to pick up a
brick and then move to position itself in a pose that makes the brick reachable. Similar tasks are
required for the brick-laying part of the Challenge. The robot must accurately determine the location
of building site and navigate and position itself to enable successful and precise brick placement.

This paper discusses our contributions in each of the aforementioned tasks. For precise navigation
in an outdoor environment, building on our previous research (Vasiljević et al., 2016), we used a
highly-precise graph-SLAM navigation and mapping algorithm based on Google Cartographer (Hess
et al., 2016). The algorithm combines 3D data from LIDAR, IMU, and GPS data to build a 3D-map
of the environment, which is then projected into a 2D costmap for faster path-planning. Visual and
depth data from an RGB-D camera is used to autonomously identify the objects of interest and
their positions within the UGV map. The geometry of the objects and properties of the Challenge
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scenario are used to estimate precisely navigation waypoints that ensure reachability of bricks and
building site. Finally, to ensure the robustness of picking up and placing of the bricks, an eye-in-hand
visual servo approach is deployed, for which a gripper was designed with an integrated depth camera,
tactile feedback, and passive-compliance components to compensate for uneven surfaces and small
differences in the orientation of the UGV with respect to the bricks. The approach to solving the
technical challenges posed by the equipment used is also discussed.

The remainder of this paper is organized as follows: Section 2 positions our approach with respect
to the state-of-the-art in the field. Sections 4, 5 and 6 present a description of the presented developed
algorithms for high-level control based on a state machine, object detection and low-level control for
navigation and manipulation. Section 7 presents the experimental results, testing the performance
of brick pick-up and pattern drop-off individually, along with the performance of the autonomous
system as a whole, performing the entire Challenge 2 task autonomously. Section 8 concludes the
paper with some comments on future work.

2. Related Work
The manipulation of objects using a robotic ground platform is a well-known concept. Pioneering
work in the development of an automated brick laying robotic system in building construction
was done as early as 1996 (Pritschow et al., 1996). Although robotic automation is widely used in
the automotive industry, it is not yet very present in the construction industry. There are many
existing solutions in terms of stationary or fixed automation solutions. However, there are also
multi-purpose mobile ground robot systems, consisting of mobile robot bases and manipulators,
enriched with task-specific end effectors and sensors such as (Gawel et al., 2019). Fully autonomous
robots for building construction are mostly demonstrated under laboratory conditions, but there
is a strong industrial need for automation in building construction (Davila Delgado et al., 2019;
Melenbrink et al., 2020).

Nowadays, object detection is usually performed with neural networks that provide fast and
reliable detection, such as Yolo (Bochkovskiy et al., 2020) or Fast R-CNN (Girshick, 2015). However,
taking advantage of the fact that the objects in the Challenge 2 of MBZIRC 2020 are color-coded,
the approach in this work is based on classical detection in HSV space, with several extensions for
increased reliability, similar to those presented in (Nieuwenhuisen et al., 2017).

Since the goal of the Challenge is to detect and manipulate objects, the robot must estimate
the pose of the brick and evaluate whether the brick is reachable before planning the grasping
maneuver. Since the gripper is equipped with an RGB-D camera, the possibility of using depth data
to estimate the pose of the brick was also explored. The most obvious approach is to generate a
point cloud from depth data and then perform template matching to extract the pose of a brick
(Vock et al., 2019; Opromolla et al., 2015). However, this is computationally expensive for dense
point clouds generated by depth cameras. Given the noise observed in depth image data in outdoor
experiments, and the fact that the variance in depth estimation for one model of Intel Realsense
camera grows quadratically with distance (Ahn et al., 2019), brick-pose estimation could not rely
on depth information, but rather on image based estimation.

Similar to object detection, the estimation of objects pose from RGB images is most commonly
approached with neural networks, as presented in (Grabner et al., 2018) and (Xiang et al., 2018).
While offering ever-increasing performance, neural network-based solutions still suffer from the lack
of annotated data (see (Kundu et al., 2018) and (Sock et al., 2020)). A priori knowledge that the
objects of interest are positioned in a certain way in the environment, and knowledge of the pose
of the camera with respect to the same environment, enable solutions that do not require neural
networks. The approach of this work to determining the object’s pose is to invert a well-known
Perspective-N-Point problem (Fischler and Bolles, 1981) and extract the position of 3D points
knowing the position of a calibrated camera in the environment, enabled by precise robot localization
and manipulator kinematics.
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(a) Husky A200 with Schunk LWA4P arm and
sensors

(b) The breakdown of the developed electromag-
netic gripper with integrated eye-in-hand depth
camera and compliant components which ensure
sufficient contact area

Figure 2. Equipment used by LARICS team in MBZIRC2020.

Once the object of interest is detected and its pose is estimated, the goal of the system is to
navigate the mobile robot to the vicinity of the object, followed by precise control of the manipulator
to execute a given task. This two-stage approach, where the mobile robot and the arm are controlled
separately (while the robot moves the arm is stationary and vice-versa), is inspired by the split-range
control concept (Reyes-Lúa et al., 2019). For the navigation part, the TEB planner (Rösmann et al.,
2017) is used in a 2D costmap obtained from a 3D-map of the environment generated by Google
Cartographer. This approach was inspired by the work in (Wulf et al., 2004) where the authors use
3D range data to generate 2D maps directly. Since the generation of waypoints in the map was based
on image processing, i.e. estimation of objects pose in robot’s coordinate frame, the navigation of
the robot could be compared to position-based visual servoing (Chaumette and Hutchinson, 2006).
However, in our approach only the reference to the controller is provided by the image processing
stack, while the feedback is provided by the map localization using Lidar. Control architecture used
for both approaching the bricks and the wall, as well as for control of the arm during loading and
unloading of the bricks, can be classified as eye-in-hand image-based visual servoing, which is often
used in the field (Muslikhin et al., 2020), (Tsay and Chang, 2004).

3. Equipment
Our hardware architecture was driven by the MBZIRC experimental setup specifications, which
required a robust mobile manipulation platform capable of driving over areas partially covered with
pebbles.

Based on these requirements and our previous experience, we selected the Husky A200, a four-
wheeled skid-steered field research platform, manufactured by Clearpath Robotics Inc. The existing
Husky hardware was equipped with an Intel® NUC i7DNHE running Ubuntu 18.04 with ROS
Melodic, which served as the primary processing and control computer. Robosense RS-LiDAR-16, a
lightweight omnidirectional laser radar with 16 beams, was mounted on the front of the robot (see
Figure 2a). To increase mapping accuracy, a Pixhawk autopilot was mounted on the robot, which
provided IMU measurements and served as an interface between the Husky on-board control and
the remote control unit (RC), which was programmed to immediately switch to manual mode in
case of emergency.
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A 6-DoF extended Schunk Powerball LWA4P lightweight arm with integrated joint drives,
controlled via a CAN interface, was mounted on the Husky. Having integrated joint drives eliminates
the need for additional external control units or power converters. The Schunk manipulator is
characterized by its reach of 1460 mm, which is significantly greater than that of other commercially
available lightweight arms. To increase the autonomy of the Husky equipped with the Schunk arm,
two separate battery packs were installed, with the first primarily powering the robot’s drive train,
and the second powering the manipulator. In addition to powering a high-current device (the robot
drive train or the manipulator), each battery pack powers some low-current electronic components.
The output grounds of the battery packs are connected to each other with star-connected grounding
cables. To achieve faster turnaround time for placing bricks, additional cargo baskets are installed on
both sides of the platform, allowing the Husky to transport up to four bricks, as shown in Figure 2a.

3.1. Passively compliant magnetic gripper with integrated depth camera and tactile
feedback

The bricks in the Challenge 2 of the MBZIRC2020 were designed to have a ferromagnetic area on
the top side, which required the design and fabrication of a controllable electromagnetic gripper.
Several constraints had to be met in the design of the gripper, which is shown in Figure 2b. Aside
from using controllable electromagnets, the gripper had to be lightweight, low-powered and strong
enough to lift bricks that can weigh up to 2 kg.

With weight in mind, ten small electromagnets were selected, each nominally capable of lifting
1 kg. The use of small and low-power magnets in conjunction with a slender ferromagnetic patch
on the bricks required that at least six magnets be in contact with the brick to generate magnetic
force of sufficient strength to lift the brick. This poses a hard constraint on the orientation of the
gripper with respect to the brick when in contact, which could not be satisfied via control algorithms.
Due to the stiffness of the Schunk arm, and consequently of the mobile manipulator as a whole,
any irregularities on the surface or even slightly different pressures in the robot’s tires could cause
misalignment of the gripper and the brick, reducing the number of magnets in contact with the
ferromagnetic patch. This in turn resulted in the robot being unable to pick up the brick.

To overcome this problem and ensure full contact of the electromagnetic gripper with the brick at
all times, a passive compliance was incorporated into the gripper with four shock-absorbing rubber
balls. The rubber balls having clearance between the rigid parts of 15 mm provide the gripper with
the ability to compensate for orientation differences of more than 10◦, which ensures optimal contact
between the magnets and the surface of the ferromagnetic patch on the brick. The size of the gripper
is 10x15cm and it weighs about 700g.

From the control perspective, laser-based navigation in free space and control based on visual
servo principles around the objects of interest are used. An Eye-in-hand approach was implemented,
with the Intel Realsense D435 integrated into the gripper, which was used both for detecting objects
during navigation and for controlling the mobile manipulator during pickup. To provide the control
algorithm with stable references while Husky is stationary, Realsense was mounted on the rigid part
of the gripper, right next to the rubber shock absorbers. To mitigate the major drawback of the
eye-in-hand visual servo approach, which is loosing feedback when close to the object of interest,
a contact sensor in form of a microswitch was added to the gripper, mounted in the center of
the end-effector. The role of the tactile feedback was to signal to the visual servo controller that
contact had been established, and to provide high-level control with information in case the brick
was dropped during transport.

4. High-level control
A challenge-specific state machine has been designed that dictates which controllers are used at each
stage of the Challenge. In certain states, both the UGV and the manipulator arm must collaborate,
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Figure 3. High-level state machine designed for the Challenge. After reaching the brick stack initial position,
the desired bricks are loaded into the brick containers. The robot navigates to the wall pattern position, and
unloads the bricks, building a portion of the wall. This process is repeated until the mission is completed.

Figure 4. Inside the Load Bricks block of the state machine.

while in other states either UGV or manipulator is controlled while the other remains idle. This
approach is described using a high-level state machine (Figure 3) .

4.0.1. UGV-only actions
The mission planner 4.1 specifies which bricks to load and unload, providing an input for the
high-level state machine (see Figure 7). The states Go To Initial Brick Stack Position and Go To
Wall Pattern are executed by the UGV, while the robot arm remains idle. During execution of
these two states, the platform navigates through the map to the approximate position of the brick
stacks, or the wall pattern, respectively.

4.0.2. Collaborative control
Operations in which the platform and the robot arm collaborate are Load Bricks and Unload
Bricks. These two behaviors have similar structures, as shown in Figures 4 and 5. Here, the platform
is controlled by Two-Stage Approach, whose objective is to guide the UGV to a pose where the
desired object is within reach of the robot arm. In other words, the emphasis is on the correct
orientation of the UGV. Although it is not critical when picking up smaller objects such as the red
brick, the correct UGV orientation becomes very important when manipulating larger objects or
when approaching the wall pattern.

Both Load Bricks and Unload Bricks include Initial Approach and Final Approach states, in
which the robot locally approaches a desired object, without taking its orientation into account.
This kind of approach is executed by directly controlling the robot drive and is referred to as Local
Object Approach in the remainder of this paper. Initial Approach is used to get close enough to
the desired object to detect its pose (Pose Detection state), after which a goal pose for the UGV,
aligned with the object pose, is calculated (Figure 6). Here, the local approach controller is switched
off, and the vehicle is stopped. The Alignment is conducted with a navigation planner that ensures
global orientation of the platform within the map, in close vicinity of the manipulated object. Upon
reaching the proper pose, the local approach controller is again switched on. The local control in the
Final Approach visually guides the platform within the object reach retaining the acquired global
orientation.
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Figure 5. Inside the Unload Bricks block of the state machine.

Figure 6. In the Alignment state we use target pose detection to calculate an aligned goal for the UGV. The
pose of the magnetic patch is obtained in the robot’s body frame LB and transformed into a map frame LM , from
which a goal pose is constructed at a fixed distance from the patch with the desired orientation of the robot
aligned with the orientation of the brick. This magnetic patch alignment is used in the Load Bricks block. A
similar principle is employed for the wall footprint alignment in the Unload Bricks block.

The main difference between the Load Bricks and Unload Bricks behaviors is that the whole
two-stage approach is executed only once when unloading bricks onto the wall pattern. All of the
subsequent Unload Bricks behaviors rely on the pattern’s pose saved in the global map frame LM
during the first pose detection state, directly proceeding to the second, Alignment stage.

4.0.3. Manipulator-only actions
Finally, procedures where only the arm is controlled while the UGV is idle are Brick Pickup and
Brick Drop. Brick Pickup includes running the visual servo algorithm used to grasp the brick with
the electromagnetic gripper and placing the brick into an unoccupied brick container. Individual
brick placement inside the containers is memorized and used to determine the starting position for
the Brick Drop visual servo in navigating the arm to the wall pattern.

4.1. Planning and laying bricks in the correct order
The blueprint for the wall provided by the referees is parsed by a planner discussed in an earlier
paper (Krizmancic et al., 2020), and the optimal sequence of bricks is calculated, taking into account
the payload capacity of the robot. Algorithm that generates the optimal brick laying order relies
on the hierarchical task representation through TÆMS (Task Analysis, Environment Modeling, and
Simulation) language (Horling et al., 1999; Lesser et al., 2004) and uses the Generalized Partial
Global Planning (GPGP) coordination framework (Decker and Lesser, 1995) to find the optimal
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Planner (Krizmancic et al., 2020)

Find brick stacks

Start

Wall blueprint

Load blue
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Build green
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Reconstruct brick positions
x

z
P1P2

Pk

Find wall footprint

Load green

Calculate alignment waypoints

Unload blue

Unload green

Navigate to stacks

LbLgBbBgLrLrLgBrBrBgLbBb

Load red

Brick stack
location

Wall footprint 
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waypoints

Endrepeat

Figure 7. Execution of a wall building scenario. Upon receiving the blueprint, the planner generates a sequence
of tasks coded Lc ( where L stands for Load and c is the color of the brick) or Bc (where B stands for build and
c is the color of the brick) as the robot searches for bricks (or drives towards bricks if the location is provided
by the UAV). Task Bc can first appear after several Lc tasks which can be executed several times until capacity
of the robot is filled. In the first building task, the robot searches for the wall footprint (or the location can be
provided externally by UAV), while in subsequent runs it uses known brick positions within the blueprint and
calculates waypoints based on the known location of the wall footprint and the dimensions of the bricks. Solid
arrows show the sequence of actions, while dashed arrows represent non-sequential information flow.

sequence of tasks with respect to the robot’s capabilities and user-specific cost and/or rewards, which
can be specified to minimize the distance traveled, energy expended or in this case, to maximize the
number of points in the competition. The mission for the robot is specified from the optimal brick
laying order as shown in Figure 7.

Figure 7 also shows how the state machines from Figures 3, 4 and 5 integrate to form a complex
behavior of the robot. As can be seen, upon receiving the blueprint, the planner generates a sequence
of actions (load brick, build brick), that are executed according to the aforementioned state machines.
It can be observed that both the brick stacks and the wall footprint are searched for only once, and
their location in the global map is used in subsequent trips to the brick stacks and to calculate
alignment poses for brick unloading. The alignment poses for unloading are calculated from the
now-known pose of the rightmost corner of the wall footprint and the brick positions within the wall
blueprint, taking into account a priori known brick dimensions.

This approach is facilitated by the underlying mapping and localization stack based on the
Cartographer, for which we have shown that localization error and drift are minimal (less than
25 cm) due to loop-closing capabilities of Cartographer, even for a more dynamic robot (UAV),
large maps (250 m × 100 m) and large distances covered (more than 600 m), both of which are
significantly larger than the arena designated for the ground vehicle in Challenge 2 of MBZIRC2020.
For more details on this evaluation, interested reader is invited to read (Milijas et al., 2020).
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Figure 8. Convex hull of the selected brick stack contour is shown with a green line. The image position of
the brick stack is denoted as (xb, yb). IDs are assigned to the detected magnetic patches and their positions are
tracked from frame to frame. In this particular case, patch number 1 is selected for approach by using a scoring
scheme that takes into account the area of the patch and the patch position in the image (denoted as (xp, yp)).

5. Detection of objects of interest
For Local Object Approach, a visual servo algorithm is used to keep observing an object while
approaching it. This requires detecting the position of the wall footprint pattern, brick stacks, and
magnetic patches in an image captured by a camera. Magnetic patch-detection is also used for the
visual servo manipulation algorithm. Here, along with its position, the orientation is also controlled.
For the Two-Stage Approach, the global pose of the approached object in map frame LM must be
estimated in order to generate an aligned goal pose for the mobile base.

5.1. Brick Stack and Wall Footprint Detection
To detect the brick stacks, the camera image is filtered using different Hue-Saturation-Value
thresholds for red, green, blue and orange bricks. Contour detection is performed on the filtered
image, and contours with a sufficiently large surface area are selected as brick stack candidates. As
a measure of the quality of a brick stack candidate, it’s surface area is used, the ones with a bigger
area being of higher quality. The center of the selected brick stack contour is used as its image
position (xb, yb), which is used for the local brick stack approach (Figure 8).

Wall footprint detection is performed in a similar way, combining Hue-Saturation-Value bounds
for yellow and magenta. To start unloading bricks onto the wall footprint, one of its edges must be
reached first, and the image position of the rightmost contour point is chosen as the goal for the
Local Object Approach corresponding to the upper right corner of the wall footprint. If the rightmost
edge is not visible in the image, the camera rotates until the edge comes into view.

5.2. Detecting the magnetic patch and calculating its pose
Contour detection is performed inside the convex hull of a selected brick stack, and detected contours
that resemble a rectangle are selected as magnetic patch candidates. The center of the detected
rectangle is used as its position in the image (xp, yp) (Figure 8).

Since the magnetic patch candidate with the largest area is not necessarily the one the robot
must pursue, a scoring scheme is used to calculate the candidate’s desirability Si based on its area
and image position. To minimize the rotation required to approach the object, this scoring scheme
prefers patch candidates positioned in the center of the image on the x axis. Since objects detected
in the lower part of the image are usually closer to the robot, the scoring scheme also favors patches
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Figure 9. Endpoints of a patch in the image plane are transformed into the robot base frame LB using camera
intrinsic parameters. The pose of the patch is calculated by intersecting the lines from the camera center through
the rectangle endpoints in the image plane with the horizontal plane whose height is extracted from the 3D point
cloud obtained from Realsense.

positioned as low as possible on the y axis. The aforementioned logic yields the following equation
to calculate the score of the i-th patch candidate:

Si = −wx|xp,i|+ wyyp,i + wAAi (1)

where Ai is the area, wx, wy and wA are non-negative weights used to tune the scoring scheme and
correspond to the x and y position in the image and area, respectively.

To prevent rapid switching from one patch candidate selection to another, hysteresis is introduced.
This forces the new candidate score to be larger than the current one by some margin. The hysteresis
introduces a memory element into the candidate selection process as candidate scores are tracked
over a period of time. It is therefore necessary to keep track of the detected magnetic patches IDs,
and update them from frame to frame.

The scoring scheme finally yields a single best patch candidate described with its corresponding
rectangle. The rectangle’s pose is determined by the pose of its major axis. In fact, only the endpoints
of this axis in the RGB camera image are considered (p1 and p2 in Figure 9), which eliminates the
effect of perspective distortion. As a first step in obtaining the rectangle’s pose in the robot body
frame LB , the pixel positions (xpx, ypx) of both endpoints’ image projections are transformed into
distance measure using camera intrinsic parameters, namely the focal length in pixels zpx and
millimeters zmm, along with the camera image resolution in pixels xpx × ypx using equation 2 for
both x and y coordinate. The complete image plane projections of the endpoints p1 and p2 in the
camera local frame LC are then obtained as p1c and p2c, with the z coordinate in the image plane
πc : z = zmm.

xmm = xpx
zmm
zpx

(2)

With a known position of the axis endpoints’ projections in the local camera frame LC , the
same are obtained in the robot base frame, denoted LB in Figure 9, using the direct kinematics
transform matrix TCB . Camera position pcam|LB

= (xcam, ycam, zcam) is also obtained in the robot
base frame LB under the camera pin-hole model assumption, with the local camera position in the
LC frame origin, using the same transform TCB . Now, lines passing from the camera origin through
the projected endpoints p1c and p2c can be described in the x-z plane in the robot base frame
with eq. 3. Here, the index i ∈ {1, 2} denotes both axis endpoints p1 and p2. The equivalent linear
equation holds for the y-z plane in the robot base frame.

x = xcam −
xcam − xpic

zcam − zpic
(zcam − z) (3)
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Figure 10. Point cloud of the Challenge 2 arena in Abu Dhabi, built by the Cartographer 3D SLAM algorithm
is shown on the left. The 2D costmap generated from the 3D point cloud, used for the Move Base package, is
shown on the right.

What remains in determining the pose of the brick patch in LB is to find the x and y coordinates
of p1 and p2 in LB , when the patch height z = patch_height is substituted into the projection
equations 3 for both x and y coordinates of p1 and p2. The patch height can be obtained from
the organized point cloud generated from the Realsense depth image upon transformation into the
camera and the base frame. Using the known location of the patch in the image, the height of the
brick stack can be read in the organised point cloud.

The pose of the wall pattern edge is obtained in a similar manner. This pose is detected once,
transformed into the global map frame using the transformation matrix TLM that contains the
estimate of robots position and orientation in the map frame LM , and reused for each subsequent
brick drop. Similarly, the pose of the magnetic patch is also transformed into the global map frame
using TLM for calculation of the navigation goal pose during the Alignment phase.

6. Low-level control for navigation and manipulation
The UGV is controlled in two ways: a) Map Navigation uses Move Base motion planning to navigate
to a desired goal in the 2D map while avoiding obstacles, b) Local Object Approach controls the
robot’s forward and angular velocity directly without taking the obstacles into account.

6.1. Map Navigation
Google Cartographer SLAM (Hess et al., 2016) is used to build a map of the unknown environment
and localize the robot in it. Since the Move Base motion planning package needs a 2D costmap, it is
generated using the 3D SLAM algorithm (Figure 10) by filtering the Cartographer submap points
based on their height. Points below the lower threshold are filtered out to avoid labeling ground as
an obstacle. Similarly, points above the robot maximum height are removed as they do not present a
real obstacle in platform navigation. Ground points that are far from the robot may be perceived as
false positive obstacles if the ground is not completely flat, which can be solved by building "smaller"
submaps with 30 laser scans per submap.

Although the Husky A200 is a differential drive mobile robot and has the capability to rotate in
place, in practice this motion causes significant vibration, particularly in cases when there is high
friction between the rubber wheels and the terrain. These vibrations severely affect certain aspects
of the system, most notably mapping and localization, as well as image processing algorithms.
To mitigate this issue, the Timed-Elastic Band (TEB) planner for mobile robots is used as a local
planner in the ROS navigation stack (Rösmann et al., 2017). The TEB planner uses online trajectory
optimization to generate a local plan for the robot subject to a minimum-turning-radius constraint.
The trajectory optimization used by the planner incorporates soft constraints on velocity limits, but
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it was found that the produced plan often does not satisfy these constraints. The algorithm was
modified to constrain the UGV’s forward and angular velocity, vx and ωz respectively

vx ≤ vx ≤ vx (4)

|ωz| ≤ ωz, (5)

while keeping the planned turning-radius
vx
ωz

= vx,planned
ωz,planned

. (6)

The initial trajectory generated by TEB satisfies the imposed turning-radius constraints by
producing a motion plan with a high number of back and forth motion switches. In the original
implementation, the initial trajectory is pursued and refined through iterative online optimization,
reducing the number of forward-backward switches. In contrast to the original implementation, this
work introduces initial conditions into the algorithm, suppressing the velocity commands until the
iterative trajectory optimization yields a plan with a satisfactory low number of forward-backward
switches. The initial conditions can also be generated by a timeout if the optimization gets stuck in
a local optimum.

6.2. Local Object Approach
Local Approach is used to track a desired object under the assumption that the object is in the
camera field of view. During servo control, the control inputs that achieve this assumption are the
UGV’s forward velocity vx, the UGV’s angular velocity ωz, and the displacement of the camera pitch
angle ∆θ controlled by the robot manipulator (Figure 11). In the competition, a rough estimate of
the initial brick stack position was known a priori, and the mobile manipulator was navigated to a
point in that area of the arena. Once there, the manipulator arm performed a rotational scanning
motion searching for the stack of a particular color, if it was not already in the field of view.

In a more general scenario, as originally announced in the MBZIRC challenge rules, the initial
information about the arena, including the map and the positions of the brick stacks and the wall
pattern, would be shared within the robot team. In this way, a quick search flight would be conducted
by the UAVs in the robot team, providing the UGV with the necessary navigation information.
Since the operation of the different types of robots was ultimately independent, a lawnmower search
trajectory was planned for the UGV with the brick stack detection and localisation as objective.
However, due to the time consumption of such a search pattern within a short experimental time
slot, and thanks to the easily located brick stacks, the lawnmower search was not deployed.

The position of the object in the image (ximg, yimg), and object distance dx, measured in the robot
frame LB , are used as the feedback. Depending on the current state, ximg and yimg are acquired
from either the brick stack, the magnetic patch, or the wall footprint detection. The object distance
is obtained by filtering the Realsense camera point cloud with the detected object mask as the
closest point in the UGVs forward direction. To deal with occasional poor distance measurements,
a constant velocity model Kalman filter is used. Since the distance is measured with the RGBD
camera, it is important to keep the desired object in the camera field of view during the approach.

Proportional controllers are used to approach the desired object, while keeping it in the center
of the image:

vx = −KA
dx

(dr − dx) (7)

ωz = −KA
ximg

ximg (8)

∆θ = KA
yimg

yimg, (9)

where dr is the desired object distance, KA
dx

, KA
ximg

and KA
yimg

are proportional gains of the distance,
x and y image position controllers respectively.
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Figure 11. Control inputs used for the local approach: the top view of the mobile manipulator with its forward
and angular velocity is shown on the left, and its side view with the camera pitch angle is shown on the right.

Figure 12. x and Pitch Visual Servo stage of the Brick Pickup behavior. The end effector movement direction
is described with respect to the robot base frame LB . Filtered camera images at the beginning and at the end of
this stage are shown on the left and right, respectively. In both images, the position of the magnetic patch on
the image y axis is close to zero, the main difference being the camera pitch angle, denoted θstart and θend in the
middle image.

6.3. Visual Servo Brick Pickup
Once the Two-Stage Approach to the brick is finished, the reachability of the magnetic patch is
checked, and if the patch is reachable, the Visual Servo Brick Pickup algorithm is executed. This
state is performed solely by the robot manipulator while the UGV remains idle. The brick pickup
motion is divided into four different stages: x and Pitch Visual Servo, y Visual Servo, yaw Visual
Servo and z Approach, all of which are executed in the robot frame LB , to decouple the controllers
used for the different stages, simplifying the tuning process.

6.3.1. x and P itch Visual Servo
During the x and Pitch Visual Servo stage of the visual servo algorithm, the x position of the
electromagnetic gripper and the camera pitch angle are controlled (Figure 12). The goal of this
stage is to orient the camera downward, while keeping the magnetic patch inside the camera image.
Increasing the camera pitch angle causes the magnetic patch to move upward in the image. This is
compensated for by moving the camera forward in the x direction.
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Figure 13. Filtered camera image after the x and Pitch Visual Servo (left), y Visual Servo (middle), and Yaw
Visual Servo (right). The sequence shows the progress of the pickup procedure. First, the end effector is positioned
directly over the center of the magnetic patch, then the effector is aligned with the axes of the patch to ensure
proper orientation of the bricks. The final offset of the camera from the center of the patch accounts for the
displacement of the camera with respect to the center of the end effector.

Two proportional controllers are active at the same time:

∆θ = KM
θ (θd − θ) (10)

∆x = −KM
yp
yp, (11)

where θd is the desired camera pitch angle, which is set to π/2 (camera facing downwards). ∆x
represents the end effector displacement in the x direction.

This stage of the visual servo pickup is completed when the camera pitch angle reaches π/2 and
the y image coordinate of the magnetic patch yp is sufficiently close to zero (Figure 12).

6.3.2. y and yaw Visual Servo
Once x and Pitch Visual Servo is finished, the remaining xp and orientation errors are eliminated
with the y Visual Servo and yaw Visual Servo proportional controllers. The following proportional
controllers are designed:

∆y = −KM
xp
xp (12)

∆ψ = −KM
ψp
ψp, (13)

where ψp is the magnetic patch camera orientation, and ∆ψ is the end effector yaw displacement
(Figure 13).

6.3.3. z Approach
z Approach starts once the magnetic patch is sufficiently close to the image center, with a sufficiently
small ψp. At this stage, the center of the magnetic patch is located directly bellow the RGB camera,
so the electromagnetic gripper is displaced to account for the offset between the camera and gripper
centers.

Distance measurements from the Realsense camera’s depth module are used to estimate the
distance between the magnetic patch and the electromagnetic gripper dz. Knowing that the height
of the magnetic patch in the robot base frame LB is N times the height of a single brick hb, where N
is a positive integer, the final value of measurement dz is set to the closest Nhb value. The following
proportional controller

∆z = KM
dz
dz (14)

is designed for the z Approach and finishes at the first triggering of the contact sensor.
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7. Results
Discussion of the performance in the competition is given in section 7.1 and presents results in an
outdoor scenario under realistic, real-world conditions. We conducted additional, post-competition
experiments to evaluate some of the previously described algorithms in an indoor environment, using
the Optitrack motion capture system to provide ground truth measurements.

7.1. Competition performance
The first real performance test for our system was the competition. The Challenge 2 environment
was designed as a single arena with two separate wall-building sites, one for the UAVs and one for
the UGV. Each of the two walls was to be built using dedicated bricks. The bricks designated for
the UGV were set up as structured brick stacks, separated by color.

Each team had three 25 minute runs to attempt the Challenge, either in autonomous or manual
mode. The location of the brick stacks and the wall footprint changed in each run, but the layout
of the Challenge was similar: the brick stacks were positioned on the side of the arena closest to
the UGV and were visible from the starting position (especially since the starting orientation of the
UGV could be set arbitrarily by the team) while the building site was somewhere on the other side
of the arena, narrowing the area for search.

In the three runs of the Challenge, the UGV managed to autonomously pick up multiple bricks
and place them in the baskets. In the second run a green brick was placed on the wall footprint
fully autonomously by the UGV, giving the team a score of 0.44444 points, which was enough for
5th place in the Challenge 2 rankings.

It was difficult to collect data in the competition, and, consequently, evaluate performance. How-
ever, certain observational conclusions were reached. No significant problems were noticed regarding
the navigation and mapping algorithms. The two-dimensional maps built by Cartographer seemed
to correspond to the environment, without any evident flaws. An example of a Challenge 2 arena
map built during the competition is shown in Figure 10. The TEB planner managed to produce and
execute a feasible plan in every instance. The planned trajectories satisfied the minimum-turning-
radius constraint and thus successfully resolved a previously described base-vibration problem. The
only evident drawback of move-base navigation is time-consumption, discussed in the "Limitations"
section 8.1.

Variable lighting conditions caused detection problems that negatively affected visual-feedback
dependent algorithms. This issue was less pronounced during local approach and more so in
manipulation tasks. Apart from that, when detection performed well, there were no problems with
the manipulation.

7.2. Post-competition evaluation
To further test overall system performance, we conducted additional post-competition experiments,
using the Optitrack system as a benchmark to provide ground truth data. In the first set of
experiments, the goal was to evaluate the performance of the Brick Loading process with two
measures: error in brick-pose estimation and brick-loading success rate.

The second set of experiments focused on evaluating the Brick Unloading performance with
similar measures: differences in estimated wall pose compared to ground truth data and success rate
of the algorithm. For both of the aforementioned experiment sets, ground truth data was obtained
by placing Optitrack fiducials on the Husky, the bricks, and the wall pattern.

In the final experiment, the goal was to evaluate the autonomy of the system performing the
entire Challenge as well as the time required to complete the mission.
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Table 1. Brick approach and loading experiment showing differences between the true (relative
to the robot, measured in the Optitrack frame) and the estimated object pose (relative to the
robot, measured in the robot frame LB) for each of the experiments and the mean absolute error
(MAE) across all experiments. Since a success rate of 100% indicates that the position of the brick
is correctly identified, we show only the total distance of the brick from the Husky and error in
estimating this distance.

Run no. Patch
distance [m]

Patch
distance error [m]

Patch
orientation [◦]

Patch orientation
error [◦] Success

1 1.632 -0.153 -87.72 -3.00 Yes
2 1.673 -0.173 -105.37 -5.43 Yes
3 1.670 -0.144 -138.48 -6.23 Yes
4 1.702 -0.159 -161.46 -7.96 Yes
5 1.761 -0.249 -66.69 -2.89 Yes
6 1.625 -0.143 -89.38 -6.47 Yes
7 1.677 -0.144 -52.12 6.90 Yes

MAE[m] = 0.166 MAE[◦]=5.5

7.3. Brick loading experiment
In this experimental scenario the robot is assumed to have located the brick stack. To complete the
brick loading task, the robot must identify an individual brick of a given color, estimate its pose,
navigate to it and pick it up. All of these actions are performed fully autonomously. To evaluate the
brick pose-estimation, the brick and the UGV poses are recorded via Optitrack at the beginning
of the Alignment phase of the two-stage approach, and compared to the pose obtained using the
algorithm described in section 5. The results of each experiment are shown in Table 1.

The experiment was repeated seven times, with a 100% success rate. Table 1 shows that the
developed algorithm can cope with various initial relative orientations between the UGV and the
brick. Since the estimated brick pose is used only to navigate to a starting point for the Final
Approach visual servo, the system is robust enough to successfully pick up the brick even if the
distance to the brick is underestimated.

We determined experimentally that the configuration of the platform and the robot arm allows
for a perpendicular approach error of approximately 26◦. All observed errors fall comfortably within
this range.

7.4. Brick unloading experiment
The effectiveness of the brick unloading algorithm was evaluated in a similar manner. The UGV is
initially placed at an arbitrary distance from the wall footprint, with an arbitrary relative orientation
between the two. The robot must position itself perpendicular to the footprint’s long axis and at
a predefined point relative to the rightmost point of the pattern. The scenario’s final step places a
brick on the wall, an action that comprises of picking the brick up from the basket and unloading
it in an appropriate location on the template or wall. The results of each run and some summary
statistics are shown in Table 2.

The experiment was performed ten times with a success rate of 100%. The outcome of the
experiment is considered successful only if at least half of the brick is placed inside the wall pattern.
With respect to the estimation of distance to the pattern, the system behaves similarly to brick
loading, since the final step is a visual servo to the patch that keeps the brick centered on the pattern
across its shorter axis. However, since the starting point for this servo procedure is constructed
based on the first pattern servo goal (which is the rightmost point of the pattern), the error in
brick placement along the longer axis of the pattern is not accounted for, generating gaps between
bricks. As can be seen in the following section, the gaps between bricks do not increase over time,
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Table 2. Brick unloading experiment showing the effectiveness of the brick
unloading procedure. The errors in orientation of the pattern are measured by
comparing the orientation of the placed brick to the orientation of the pattern,
measured in the Optitrack frame. The distance and the orientation of the
pattern with respect to the robot when it is first detected is also shown.

Run no. Pattern
distance [m]

Pattern
orientation [◦]

Brick placement
orientation error [◦] Success

1 1.232 2.79 4.96 Yes
2 0.934 52.22 1.41 Yes
3 1.208 1.03 1.03 Yes
4 1.263 28.05 4.91 Yes
5 1.125 3.74 4.91 Yes
6 1.269 0.57 6.85 Yes
7 1.211 6.65 9.55 Yes
8 1.321 1.68 9.88 Yes
9 1.457 2.55 2.38 Yes
10 1.115 2.73 4.31 Yes

MAE[◦]=5.02

Figure 14. Path traversed during the fully autonomous wall building experiment. The wall footprint pattern,
brick stack position, and the UGV starting position are shown in a 2D map built during the experiment. Dimensions
of the arena are 10 × 7.5m. Distance between the UGV start position and the brick stacks is 7m. The distance
between the starting position and the wall footprint is 3.5m.

suggesting that the longitudinal errors in brick placement are, for the most part, generated by the
TEB planner’s goal tolerance and, to a lesser degree, by errors or drift in localization.

7.5. Wall Building Scenario
An experiment to evaluate the entire autonomous wall building scenario was performed in the
Challenge mock-up environment built on the University campus, shown in Figure 1, with the
experiment layout as shown in Figure 14. The experiment layout is inspired by the one in the
Challenge. The bricks are set up as structured brick stacks separated by color, and the wall pattern
is placed on the other side of the arena. Similarly to the competition, there are no obstacles between
the brick stacks and the building site.

The system is provided with a desired wall configuration, along with the approximate initial
position of the brick stacks, and that of the wall footprint. The wall building speed highly depends
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Figure 15. Six brick wall built in an autonomous full-scale MZBIRC 2020 Challenge 2 experiment. Total of three
trips between brick stacks and wall were required and all bricks were placed within the boundaries as proposed
by the competition.

on the desired wall structure, as different colored bricks take up different amounts of space in the
brick baskets. This situation makes some wall structures less desirable speed-wise, as they require
multiple trips between the brick stacks and the wall footprint to complete the wall. Another factor
that affects the overall speed of the system is the Challenge layout: the initial brick stacks position,
the initial UGV position, and the wall-footprint position. Performing full runs of the experiment
is time consuming, but from the several runs that were completed, it was observed that the UGV
is capable of transporting and laying 6 to 10 bricks within 25 minutes 1, depending on the wall
configuration. The final result of such a run is shown in Figure 15.

The wall, consisting of two blue, two green, and two red bricks was successfully built without
requiring any type of manual intervention. It took the robot 23 minutes and 37 seconds to perform
the entire experiment, and all bricks were placed with sufficient precision to satisfy Challenge rules.
A video of the experiment is available at https://youtu.be/0C_E7tGCZ5k.

Overall, the experiments shown in this paper validate our approach and confirm that precision
of the constrols, 3D-map localization, navigation and the pose-estimation from RGB images satisfy
the Challenge requirements. Finally, our custom-developed, passively-compliant, electromagnetic
gripper successfully addressed the end-effector misalignment problem in every brick loading and
unloading procedure.

8. Conclusion
This paper presented the LARICS team’s approach to the Challenge 2 of MBZIRC 2020 competition,
as well as the post-competition experimental setup and results. Both the brick loading and unloading
experiments were performed with a 100% success rate, the latter of which resulted in brick placement
sufficiently precise to satisfy Challenge rules. During the full Challenge experiment, a wall consisting
of two red, two green and two blue bricks, shown in Figure 15, was built autonomously. The entire
trial lasted 23 minutes and 37 seconds.

8.1. Limitations
Our approach described in this work is specifically designed for a semi-structured scenario, as
described by the Challenge 2 rules, and as such does not generalize to other non-structured scenarios.

1 Time limit for the Challenge
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The only obstacles in the competition arena were the brick stacks and an UAV wall-building
site (as seen in Figure 10). Even though the TEB planner takes obstacles into account, a more
crowded environment could introduce obstacle-avoidance problems. Since the planner is configured
to use a large minimal-turning-radius, in environments with many obstacles it may be unable to
produce a feasible plan due to numerous constraints. This conflict could be tackled by reducing the
minimum-turning-radius or using a different planner.

In the Challenge, the bricks were initially structured in stacks separated by color, which
organization was exploited in the local approach and manipulation algorithms. The local approach
does not take obstacles into account, as long as they do not interfere with the visual feedback. This
constraint could present a problem in a more general scenario, if there are obstacles in close proximity
to the target object. Likewise, the manipulation algorithms were designed with a structured brick
stack in mind and would require modifications in the case of a chaotic brick pile.

Object detection based on HSV filtering presents an obvious general-case limitation in terms of
object and environment texture. The bricks in the competition were color-coded to stand out from
the environment. Nevertheless, detection proved to be difficult in the Challenge 2 scenario. Each
trial was conducted under different sunlight conditions, forcing the adjustment of HSV thresholds
used for both brick and wall-footprint detection. Brick-stack and wall-footprint detection, which are
solely color-based, performed well even with a less than optimal HSV thresholds, while grasp-point
patch-detection, which is based on both color and shape, was more error-prone, especially in cases
where the manipulator creates a moving shadow on the brick.

In our post-Challenge tests, bricks were placed on the wall-footprint with an orientation MAE of
5.02◦, and a more significant position error as evidenced by gaps between bricks. These errors were
more pronounced in a full challenge scenario, due to the fact that the UGV does not detect the
wall pattern’s pose at each brick drop, but memorizes its map pose and reuses it. This issue could
be avoided using fresh detection of the previously placed bricks or the wall pattern edge during the
alignment, but was not found to be necessary.

There is room for improvement in speed. Most of the time is spent in the navigation stages of the
Challenge, mainly in the stages that involve Move Base motion planning. This situation is due to
the TEB planner re-planning until the goal pose-tolerance is satisfied. Since the trajectory produced
by the TEB planner is constrained by a minimum-turning-radius, a small error in the achieved pose
requires a non-trivial maneuver to eliminate it. Furthermore, we suspect that the manipulation
speed could be improved using not only the image position of the detected magnetic patch, but also
its estimated global pose to plan end-effector motion.
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Reyes-Lúa, A., Zotică, C., Forsman, K., and Skogestad, S. (2019). Systematic design of split range controllers.
IFAC-PapersOnLine, 52(1):898–903.

Rösmann, C., Hoffmann, F., and Bertram, T. (2017). Integrated online trajectory planning and optimization
in distinctive topologies. Robotics and Autonomous Systems, 88:142–153.

Sock, J., Castro, P., Armagan, A., Garcia-Hernando, G., and Kim, T.-K. (2020). Tackling two challenges of
6d object pose estimation: Lack of real annotated rgb images and scalability to number of objects.

Tsay, T. and Chang, C. (2004). Pose control ofmobile manipulators with an uncalibrated eye-in-hand vision
system. In 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE
Cat. No.04CH37566). IEEE.
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