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System for Capturing A Moving Drone
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Abstract: This paper describes an autonomous navigation and control system for capturing the
maneuvering drones. A vision-based navigation method seeks and detects the intruding drone, then,
the target trajectory is predicted by fusing onboard vision and inertial-measurement resources. The
target’s relative position, velocity and acceleration are also obtained at the same time. Then, we
present a modified proportional-derivative (PD) algorithm based on the estimated target states. In
addition, the boundary constraints of the protected area are considered to avoid a collision. The
proposed capture navigation and control system has demonstrated its efficiency both in simulation,
flight experiments, and MBZIRC 2020, where our team won the Challenge I competition.
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detection.

1. Introduction
In recent years, small drones have been widely used due to their convenience and cost-effectiveness.
Some have been used for illegal surveillance and malicious actions, which threaten the economic
development and public safety (Rogers, 2019). Thus, many researchers are looking for an efficient
way to counter invading drones and ensure the safety in urban environment. The method of shooting
down the target one by one with a long spear has low accuracy. Attacking target with a missile
or laser weapons inevitably produces aerial falling objects and collateral damage to the ground
environment. Besides, the weapons are more expensive than the small drones (Brust et al., 2017).
Thus, this paper focuses on utilizing the multicopter to accurately capture and carry the target
back home. This autonomous system is cost-effective due to its recyclability, and it also can avoid
undesirable side-effects.

Capturing small drones requires highly-accurate guidance and control systems. Target-
interception and guidance algorithms have been extensively studied and can be applied to the
control phase of drone capture. Among them, proportional navigation (PN) algorithm has been
widely used for interception of low-speed targets due to its optimality (Zarchan, 2012; Bing et al.,
2016), but the PN algorithm cannot handle situations where the target drone is faster than the
pursuer (Becker, 1990). Yoon et.al. (Yoon et al., 2008) proposed a two-point, pursuit-guidance
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method and an adaptive, backstepping controller for the vision-based net-recovery, which approach
significantly complicates the control system. However, a trajectory-tracking method can be used
to capture the moving drone if the target trajectory is obtained (Yamasaki et al., 2007). For this
reason, we have focused on developing an accurate, real-time, trajectory-predicting method. With
this design, we can then augment simple PD tracking algorithm with estimated target states to
achieve successful interception.

Trajectory-prediction algorithms mainly consist of modeling and data-based methods. The first
method must build a target-motion or relative-motion model. Gambs (Gambs et al., 2012) developed
the Mobility Markov Chain (MMC) algorithm for the next location prediction, and the accuracy
of the method is in the range of 70 to 95 percent. However, the MMC has a high complexity and
complicated calculation process. The data-based method has developed rapidly using the Machine
Learning approach in these years. The authors of (Yang et al., 2017) proposed a trajectory-prediction
model based on bidirectional, long, short-term memory (B-i LSTM) neural network. This approach
requires the target pose and relative position as the prediction input, but the pose information for
uncooperative target is hard to obtain. In Xu Ximeng’s work (Ximeng et al., 2019), the parameters
of the output-input feedback Elman network are optimized by the genetic algorithm and then the
GA-OIF-Elman neural network is established to predict the target trajectory. Although this method
does not depend on the target motion model, it requires a high computing power of the airborne
platform.

In this paper, we present a multi-source prediction method that utilizes the information of onboard
machine vision and IMU. In order to obtain the relative motion information of the target and the
pursuer, a two-axis electro-optical pod (EOP) utilized and its output is fused into the prediction
system via an Extended Kalman Filter (EKF) (Zarchan and Musoff, 2005). The EKF process
can provide the velocity and acceleration of the target, which are then compensated into the PD
algorithm. Our modified PD approach relaxes the maneuver requirements on the pursuer drone, thus
enabling successful intercepts even when the intruder performs irregular maneuver patterns. Finally,
since we have prior details of the competition arena, we add appropriate boundary constraints to
our control rules to avoid hitting walls or other obstacles.

The contribution of this paper was applied and verified in the competition of the Mohamed
Bin Zayed International Robotics Challenge (MBZIRC) 2020. In Challenge I, a small, detachable
ball is suspended under a drone, which flies around the competition arena in a figure-eight pattern
of randomly varying altitude. The Challenge I is to capture the target ball and carrying it back
to the landing point. Contact and collision with the target drone are not allowed during the
capturing process. This mission is obviously more difficult than intercepting a drone because the
ball is only 13cm in diameter and swings in a pendulum fashion beneath the target drone. Despite
numerous difficulties, we successfully completed the ball-capture task with full marks and won the
championship of the challenge.

The rest of this paper is arranged as follows. The first section introduces the problem formulation
and the hardware components of our system. Software framework and state machine are also
presented. The target search and detection algorithm are discussed in Section 3, which is followed by
the trajectory-prediction method. Section 5 explains the control strategy for autonomously capturing
the target ball. The boundary constraint is also considered in this section. Section 6 provides the
results of the conducted simulations and flight experiments and is followed by conclusions about our
design, methods, and system performance. Lessons learned and future research are presented in the
last section.

2. Preliminaries
In the scenario, a target drone is assumed to invade the arena whose size is approximately 100×40m.
The target drone hangs a 13cm ball and moves along a random 8-shape trajectory. The schematic
diagram of the arena and flight trajectory of the target drone is presented in Figure 1a. Figure 1b
shows the target drone and the hanging ball.
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(a) Schematic diagram of the arena (b) Description of the target

Figure 1. Description of the competition in MBZIRC Challenge 1.

Before studying control algorithms, the relative motion analysis between the target and pursuer
is necessary. The hardware components of our pursuer multicopter are introduced in detail. The
overview of the proposed framework is finally offered.

2.1. Motion geometry description
In order to establish the three-dimensional relative motion of the target and the pursuer, the relevant
coordinate systems are introduced as follows.

The earth-fixed coordinate system (OeXeYeZe). The coordinate origin Oe of the OeXeYeZe
system is chosen as the initial position of the multicopter, which is usually determined at power-up.
The OeXe axis points to the direction of geographic east, and the OeYe points to the direction of
north. The OeZe is determined according to the right-hand rule.

The multicopter-body coordinate system (ObXbYbZb). The ObXbYbZb system is fixed to the
multicopter and takes the pursuer’s center of gravity (CoG) as the origin. For the X-configuration
multicopter, the ObXb axis points to the nose direction in the symmetric plane of the multicopter.
The ObZb axis is in the symmetric plane of the multicopter, perpendicular to the ObZb and pointing
upward. The ObYb axis is determined according to the right-hand rule. The rotation relationship
between the OeXeYeZe and the ObXbYbZb is expressed by Euler angles (γ, θ, ψ).

The light-of-sight (LOS) coordinate system (OLXLYLZL). The LOS coordinate(OLXLYLZL)
is introduced to describe the relative motion between two vehicles, whose origin coincides with the
pursuer’s center of gravity. The OLXL axis points to the target and is consistent with the line of
sight, OLZL lies in the vertical plane which contains the OLXL and is perpendicular to OLXL,
pointing upward. The y-axis is determined according to the right-hand rule. The pitch and yaw
LOS angle qy and qz denote the rotation transformation from OeXeYeZe to OLXLYLZL.

The three-dimensional relative motion model between target and pursuer is illustrated in Figure 2.
The position vector of target and multicopter referred to OXeYeZe frame are defined as Pt and Pm,
respectively; Vt and at are the velocity vector and acceleration vector of target, while Vm and am
represent multicopter’s velocity and acceleration. The relative motion vectors of the target and the
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Figure 2. The engagement geometry between the target and the pursuer multicopter.

pursuer in OXeYeZe system is given

∆P = Pt − Pm
∆V = Vt − Vm
∆a = at − am

(1)

Subsequently, the LOS angles can be formulated using the relative position of the target and the
pursuer multicopter.

qy = arctan
(

−∆Pz√
∆P 2

x +∆P 2
y

)
; qy ∈

(
−π2 ,

π
2
)

qz = arctan
(

∆Py

∆Px

)
; qz ∈ (−π, π)

(2)

2.2. Hardware components
The hardware system was designed according to the mission, the limitation for mission time and
the multicopter’s size in the challenge. The main hardware components and their relationship were
shown in Figure 3. In order to achieve the searching task, we chose a two-axis electro-optical pod
(EOP) to detect and track the target drone. A 1080p Sony camera is mounted on the gimbal and
then integrated into the EOP. The gimbal can rotate 360 degrees, which can help to search targets
omnidirectionally. In addition, the gimbal is able to stabilize the camera’s image collection for the
visual detection. The light-of-sight motion information between the target and the pursuer is also
provided by the EOP, and this is helpful for the target trajectory prediction.

An onboard computer, NVIDIA AGX Xavier, was used for image processing and task manage-
ment. This small module can provide 32 Tops of computing power with a power as low as 10 watts,
which is suitable for training and deployment of neural network models. The control nodes for EOP
and Fight Control Units (FCU) of the multicopter are also computed in NVIDIA module. We chose
the DJI Matrice 210 (M-210) as our flight platform considering the load requirement, in which FCU
and Inertial Measurement Units (IMU) are integrated. Mention that our software control algorithms
are universally used for other FCU, such as Pixhawk.

The capture mechanism was designed and manufactured by our team, which is made by fishing
nets and carbon fiber tubes. The horizontal capture range of the capture mechanism is 0.8 meters.
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Figure 3. Components description of our hardware platform.

It can not only release the control accuracy of the control algorithm, but also carry the target back
to the required drop zone.

2.3. Software framework
This paper aims at introducing an autonomous navigation and control system for capturing the
maneuvering target. The capture state machine (Figure 4) starts form autonomously takeoff and
searching for the target. After the target is stably detected, the pursuer multicopter will implement
capture control and intercept the target. The related core software algorithms are target search and
detection, target trajectory prediction and capture control, which will be described in the following
sections.

3. Target Search and detection
3.1. Searching algorithm
The search algorithm is necessary because the camera has a limited field of view (FOV) and the
target drone moves randomly in the 100 × 40m arena. In this case, we designed a search method
for the EOP, which can expand the detection field of view by rotating the camera. For the square
field of view, the search area of the square trajectory is larger than that of the circular trajectory.
Thus, we chose the square trajectory for the optical axis. Figure 5a presents area scanned by the
camera’s FOV following the movement of the optical axis. L,W indicate the length and width of
the square while the subscript t, f, s denote the square of the search trajectory, camera’s FOV and
scanned area, respectively. The movement trajectory is designed according to the range of target
movement in vertical and horizontal direction. Given the estimated maximum movement range δtx
of the target and the minimum distance Dmin, the relationship between δtx and scanned length Ls
is illustrated in Figure 5b. We can get

Ls = δtxf

Dmin
= Lt + Lf (3)
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Figure 4. The flow diagram of the capture state machine.

Where f denotes the focal length. The FOV of the utilized camera is 67 deg ∗37.6 deg. Subse-
quently, we can derive the desired horizontal movement angle of optical axis

αc = tan
Lt
f

= tan
δtxf − LfDmin

fDmin
(4)

In the same way, we can get the desired vertical movement angle βc. The angle commands (αc, βc)
are implemented in the EOP gimbal. To ensure that the target can appear in the FOV no matter
which direction the target is flying from, the search period of the EOP can be designed to be one-half
of the target motion period.

3.2. Object detection
Since the intruding drone was uncooperative and moving quickly, we used the visual perception
algorithm to detect the target and provide the navigation information. The target drone and the
small ball hanging below the drone can form an associated system. Aiming at this highly dynamic,
composite target, our team proposed a single-stage rapid collaborative target detection algorithm
between the parent vehicle and the depending object.

Target annotation can increase the learning of the detection network’s overall representation
ability of the target, thereby improving the final detection accuracy. Thus, we collected and labeled
thousands of target images to augment the dataset. we made an equal scale model according to
the rules, and then collected the data around the suburban flight test site and labeled the collected
images manually, including the ball, the drone and the entire target. The annotations of the image is
shown in Figure 6. Detecting the entire target at the long distance can greatly increase the detection
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(a) Search trajectory and scanned area

(b) Search geometry

Figure 5. Working sketch of EOP search field.

Figure 6. Annotations of the target image.

Figure 7. Illustration of the network architecture for target detection.

distance, while only detecting the hanging ball will improve the detection accuracy when the target
is close to the pursuer.

As for the network model, our team made three improvement for the related category detection
based on the Fully Convolutional One-Stage Object Detection (FCOS) algorithm(Law and Deng,
2018). Firstly, the parallel independent prediction branch is introduced to solve the conflict between
the target classification and the bounding box regression. Then, we utilized the correlation class
mask enhancement(He et al., 2017; Fu et al., 2019) to help the detector learn the target feature
better and reduce the interference of background features in the rectangular box of the target.
Finally, the correlation class feature relation constraint, which use the correlation of different class
features, is applied to improve detection accuracy. The illustration of the network architecture used
in this paper is shown in Figure 7.
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Figure 8. The target detection results in different scenes.

This object detection algorithm can achieve real-time processing (25FPS) on the onboard
computer (NVIDIA AGX Xavier), which is helpful for tracking the maneuvering target. Some
representative detection results are shown in Figure 8

The pixel deviations (u, v) in the pixel-scale coordinates are obtained after the target is detected.
Subsequently, the angle deviations between the target and the optical axis can be derived using the
pixel errors and FOV of the camera. Inputting the angle deviations to the control algorithm of the
EOP gimbal, the camera in EOP can lock the target in FOV quickly and stably. Given that the size
of both the target drone and the ball are known, we can also derive the distance between the target
and the pursuer multicopter using the camera focal length f and the target size in the image plane.

D = Swx f

Simx
=
Swy f

Simx
(5)

Where the subscript x, y denote the length and height of the target. The superscript w and im
indicate the world coordinates and the image plane coordinates, respectively.

4. Target trajectory prediction
Kalman filter approach can optimally estimate the system state through state prediction and update
process, thus it is especially suitable for real-time state prediction of high-dynamic moving targets.
Considering the non-linearity of the prediction system, we adopt the extended Kalman filter to
estimate the target motion state(Daum, 2005).
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4.1. Prediction principle of EKF
The extended Kalman filter is developed basing on the Kalman filter(Park and Lee, 2001). The first
step is to linearize nonlinear systems, including the state function f(•) and measurement function
h(•) in Equation 6. Taylor expansion and small item hypothesis method are usually adopted for
linearization. Then we utilize the basic process of Kalman filter to perform recursive calculations
and prediction.
xk+1 = f (xk, uk, wk)
zk = h (xk, vk)

(6)

where k is the discrete time. xk, uk and zk are the state vector, control vector and measurement
vector of the dynamic system, respectively. Both f [•] and h[•] are the differentiable vector function.
wk is the process noise with zero mean, namely E [wk] = 0. The variance matrix of wk is Q =
E
[
wkw

T
k

]
. vk is the measurement noise with E [vk] = 0, and its variance matrix is R = E

[
vkv

T
k

]
.

It is assumed that wk and vk are uncorrelated white noise, thus we can also get E
[
wjv

T
k

]
= 0. The

initial state x(0) is a random variable and uncorrelated to wk and vk,

E [x0] = x̂0

E
[
(x0 − x̂0) (x0 − x̂0)T

]
= P0

(7)

The linearization approach is shown in Equation 8.

F (k − 1) = ∂f
∂xT

∣∣∣
x=x̂(k−1)

H(k) = ∂h
∂xT

∣∣
x=x̃(k)

(8)

Then the discretized state transition matrix can be approximated as

Φk(x̂) ≈ I + F (x̂)Ts (9)

The discrete process noise variance matrix Qk and measurement noise variance matrix Rk can
be derived by

Qk =
∫ Ts

0 Φ(τ)QΦT (τ)dt
Rk = R

(10)

After the linearized system is obtained, the filtering steps of the standard discrete Kalman filter can
be implemented with the following equations:
State estimate process:

x̂−
k+1 = f (x̂k, uk, 0)

P−
k = ΦkPk−1ΦTk +Qk−1

(11)

The correction of estimate process:

Kk = P−
k H

T
k

(
HkP

−
k H

T
k +Rk

)−1

x̂k = x̂−
k +Kk

(
zk − h

(
x̂−
k , 0

))
Pk = (I −KkHk)P−

k

(12)

4.2. Estimation model
To estimate the motion state of the target, the state vector for EKF is selected as

X = [∆Px,∆Py,∆Pz, Vtx, Vty, Vtz, atx, aty, atz, Vmx, Vmy, Vmz] (13)

Where, the relative position ∆Pt, the target’s velocity Vt, the target’s acceleration at and the
pursuer’s velocity Vm are all defined in the earth-fixed coordinate system. Here we introduce the

Field Robotics, March, 2022 · 2:34–54



Autonomous navigation and control system for capturing a moving drone · 43

three-dimensional the pursuer’s velocity instead of the acceleration to assist in estimating the target
state, which is because the measurement accuracy of the multicopter is higher while the signal-noise
ratio (SNR) of the measured acceleration is low.

In this competition scenario, we know that the target moves following the 8-shape trajectory.
Thus, the target motion model can be predicted as sinusoidal maneuver. The target motion model
is shown in the following equation

Pt = Pt0 +A sin(ωt)
Ṗt = Aω cos(ωt)
P̈t = −Aω2 sin(ωt)
...
Pt = −Aω3 cos(ωt) = −ω2Ẋt

(14)

where Pt = (Ptx, Pty, Ptz), which means the target moves sinusoidally in three-dimensional space.
ω denotes the target maneuver frequency, which can be roughly estimated from the given target’s
velocity and the size of the flight arena.

Thus, we can get the discrete state equation

Ẋ =


03×3 I3×3 03×3 −I3×3
03×3 03×3 I3×3 03×3
03×3 −ωt3×3 03×3 03×3
03×3 03×3 03×3 03×3

X +


03×1
03×1
wat(t)
wvm(t)

 (15)

where, wat(t) and wvm(t) are the process noises. ωt3×3 can be decomposed into

ωt3×3 =

 ωtx 0 0
0 ωty 0
0 0 ωtz

 (16)

4.3. Measurement model
With the hardware sensors mentioned in subsection 2.2, we can extract several information to
characterizes the relative motion. In this paper, we make good use of the LOS information provided
by the EOP and the pursuer’s velocity measured by the onboard IMU. The measurement states for
this prediction method are chosen as

Z = [D, qy, qz, q̇y, q̇z, Vmx, Vmy, Vmz] (17)

Where, qy, qz represent the rotation angles in the pitch and yaw direction between inertial and
LOS coordinates, respectively. q̇y, q̇z are the corresponding LOS angular rates in LOS coordinates.
(Vmx, Vmy, Vmz) is the inertial velocity vector of the pursuer. The measurement accuracy of these
states will be described below.

Distance measurement. The distance D from the target to the pursuer can be obtained by using
the onboard visual detection algorithm, Equation 5. In this ball capture task, we chose to calculate
the distance from the pursuer to the target ball instead of the target drone. Using the object
detection method proposed in this paper, the camera can detect the targets within 50 meters. The
update frequency of the distance measurement is 25Hz. If the target is lost during the tracking
mode, the distance value will keep the value at the last moment. Taking the RTK information as
the true value, the relative error of the measured distance is 10% and the measured accuracy of D
was 1 meter.

LOS motion measurement. The EOP can track the target in real time and measure the angle
and angular rate between the target and the camera optical axis. Thus, the raw measurements
provided by EOP are frame angles and angular rates in EOP’s internal frame of reference. Coordinate
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Figure 9. The architecture of the target prediction method.

system transformation is necessary since we need the LOS angle qy, qz and LOS angular rate q̇y, q̇z.
The conversion for EOP information is very basic, so we won’t go into details here. A three-axis
turntable (Huckridge et al., 2016) was utilized to calibrate the measured accuracy of the LOS motion
information, which are 5 deg and 0.6rad/s respectively for LOS angle and angular rate. The update
frequency of the EOP output is 60Hz.

Velocity measurement. The onboard Inertial measurement unit (IMU) integrate angular rate
gyroscope, accelerator and barometer. By fusing the measured value of these sensors and the
longitude and latitude information of GPS with EKF method in the FCU module, the velocity
of the multicopter can be obtained. The onboard inertial measurement units are able to provide the
velocity information of the pursuer. The accuracy is 0.5m/s and the update frequency is 50Hz. The
measurements noises are considered as Gaussian white noises after statistical analysis.

Combining the above measurement equations, we can get the measurement model for the EKF
process.

h(x) =



D

qy

qz

q̇y

q̇z

Vmx

Vmy

Vmz


=



√
∆P 2

x + ∆P 2
y + ∆P 2

z

arctan
(

−∆Pz√
∆P 2

x +∆P 2
y

)
arctan

(
∆Py

∆Px

)
−∆vz(∆P 2

x +∆P 2
y )−∆Pz(∆Px∆vx+∆Py∆vy)

(∆P 2
x +∆P 2

y +∆P 2
z )√∆P 2

x +∆P 2
y

∆Px∆vy−∆Py∆vx√
∆P 2

x +∆P 2
y

√
∆P 2

x +∆P 2
y +∆P 2

z

Vmx

Vmy

Vmz



(18)

Utilizing Equation 8, 11 and 12, the relative position, target velocity and acceleration are
estimated. Moreover, we can also obtain the target position in OeXeYeZe coordinate since the
pursuer’s position is provided by the onboard IMU. As a result, the flight trajectory is predicted.
The information flow chart for the target trajectory prediction method is shown in Figure 9.

5. Control strategy
The take-off and return control can easily use a simple position control, whose application is very
mature. Thus, we focus on describing the control algorithm for the drone capture using the estimated
information in this section.
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Figure 10. The architecture of the capture control model.

5.1. Capture control algorithm
The proposed trajectory prediction method in Section 4 has provided extremely beneficial infor-
mation for the control system, including the relative position ∆P , velocity Vt, acceleration at of
the target. We adopted a simple capture control algorithm basing on the traditional Proportional-
Derivative (PD) method of relative velocity (Figure 10). The PD control formula can be expressed
as

ac =
(
kp2 + kd

∆
∆t

)
(Vd + Vc − Vm) (19)

Where Vc = kp1(Pt − Pm). Substituting Vc into Equation 19, we can get

ac = kp1kp2(Pt − Pm) + (kp2 + kp1kd)(Vt − Vm) + kd(at − am)
= kp(Pt − Pm) + kv(Vt − Vm) + kd(at − am)

(20)

Mention that most of the onboard accelerator of the multicopter are noisy and inaccurate, so we
only compensate the estimated at instead of at − am. As a result, the capture control algorithm
yields

ac = kp(Pt − Pm) + kv(Vt − Vm) + kaat (21)

Where kp, kv, ka are the control gains for position, velocity and acceleration item, respectively. Many
methods have been proposed to tune the gains of PID controllers, such as frequency loop-shaping
method (Grassi and Tsakalis, 2015), adaptive-tuning method (Achour et al., 2015) and optimal fuzzy
method with stochastic algorithms(Pan et al., 2010). However, most of the tuning methods require
the accurate model of the object and do not have simplicity for practical applications. In this paper,
we determined the control gains both in simulation and flight experiment based on the attenuation
curve method (Qingyan et al., 2018), which is based on the test data that the attenuation ratio of
the response curve of the control system transition process is 4:1. Since the pursuer multicopter is
a symmetrical model, and its forward and lateral control models are basically the same.

In the object capture mission, a grabbing mechanism is usually utilized to capture the moving
target. The installation position of the capture mechanism cannot coincide with the position of the
optical axis of the camera, so as not to avoid obstructing the field of view. Thus, we need to add
a bias term to the capture control algorithm. This bias term ξb represents the three-dimensional
position of the grabbing device relative to the camera center in the pursuer’s body coordinate.
Since the control command is described in the earth-fixed frame, ξb needs to make the coordinate
transformation using Equation 22

ξi = Cibξ
b (22)
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Where Cib indicates the transformation matrix from the earth-fixed coordinate to the pursuer’s body
coordinate, which is derived using the Euler angles (ψ, θ, φ).

Cib =

 cos θ cosψ sinφ sin θ cosψ − cosφ sinψ cosφ sin θ cosψ + sinφ sinψ
cos θ sinψ sinφ sin θ sinψ + cosφ cosψ cosφ sin θ sinψ sinφ cosψ
− sin θ sinφ cos θ cosφ cos θ

 (23)

As a result, we get the bias modified PD control algorithm (Equation 24) to intercept the target.
It is simple but can greatly improve the capture performance for the maneuvering target due to the
compensation of estimated at.

ac = kp(Pt − Pm − ξi) + kv(Vt − Vm) + kaat (24)

Considering that the vertical mobility of the target drone is weak, we only add the acceleration
compensation in horizontal plane. In order to ensure the safety of the pursuer without colliding
walls or other obstacles, a boundary-approaching constraint is considered under the condition that
the position information of the obstacle walls is known. The obstacle information can be obtained
from the visual obstacle avoidance algorithm or geofence. Setting the distance between the obstacle
and the pursuer is Ro, then the safety distance Rs corresponding to the multicopter velocity and
maximum acceleration amax can be derived by Rs = V 2

m

2amax
. As a result, the constraint control yields

acb = − V 2
m

2Ro
, Ro ≤ Rs (25)

5.2. Yaw control
To ensure that the nose of the multicopter points to the target, we keep the yaw angle of the pursuer
tracking the LOS yaw angle. Thus, the yaw control for the pursuer multicopter is given

ψc = qz (26)

Combining Equation 24 and 26, we can derive the commands for pitch, roll and thrust channel
(Quan, 2017). The dynamic model of the multicopter and the transformation can refer to (Mcnamee
and Barrett-Gonzalez, 2020). Since the transformation from the acceleration commands to the
attitude commands are programmed in most of the flight control unit (FCU), the control node
in our system only needs to output ac and ψc to the FCU. Then, the multicopter will be controlled
to intercept the target.

6. Experimental verification
This section presents the simulation and flight experiment results of the proposed control system,
from which the capture performance is analyzed. We chose a self-developed multicopter based on
the Pixhawk firmware at the beginning of the preparation but replaced it with DJI M-210 platform
after considering the load problem of the capture mechanism. Thus, the proposed control methods
are applicable both for DJI FCU and Pixhawk FCU.

6.1. Simulation work
The simulation work was conducted using the multi-vehicles simulation environment in the
ROS/Gazebo robotic simulator (Figure 11), which supports the hardware-in-the-loop simulation
with Pixhawk firmware.

To observe the accuracy of the predicted target trajectory compared to the true value rather
than the measured trajectory, we designed an estimating process in Gazebo simulator, in which the
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Figure 11. Simulation environment in the ROS/Gazebo robotic simulator.

Table 1. Measurements noise variance for EKF.
Measurements D(m) qy (deg) qz (deg) q̇y (deg) q̇z (deg) Vmx (m/s) Vmy (m/s) Vmz (m/s)
Noise Variance 1 25 25 0.36 0.36 0.25 0.25 0.25

measurement state mentioned in Equation 17 were calculated numerically and then added the noises
measured in the flight experiment (refer to Table 1).

A three-dimensional 8-shape trajectory for the target was designed in this scenario. The period
of a trajectory was set as Tt = 24s. The center of the trajectory was (xt0, yt0, zt0) = (0m, 0m, 15m),
which was also the initial location of the target. The target motion model was determined by
Equation 27. The pursuer multicopter was hovering at (0m, 0m, 5m) and observing the target.

Pxt = 40 sin(2π
24 t) + Pxt0

Pyt = 15 sin(2π
12 t) + Pyt0

Pzt = 4 sin(2π
24 t) + Pzt0

(27)

6.1.1. Simulation for target trajectory prediction
Referring to the EKF method described in Section 4, we derived the initial relative position
deviation (∆Px0,∆Py0,∆Pz0) from Equation 18. Thus, the initial estimating state was set as
X0 = [∆Px0,∆Py0,∆Pz0, 0, 0, 0, 0, 0, 0, Vmx0, Vmy0, Vmz0]. Then, we selected the initial covariance
matrix as P0 = diag([0, 0, 0, 25, 25, 25, 9, 9, 9, 0, 0, 0]). The maneuver frequency of the target was
roughly set as ωt = ( 2π

30 ,
2π
15 ,

2π
30 ). The noises variance of the measurements are presented in Table 1.

By analyzing the system process noise, Q is adjusted and finally determined.
As the Figure 12 shown, the predicted target trajectory fitted well with the true path. The

RMS errors of the estimated target position in Figure 13d were converged below 0.5m in 2.5s. The
proposed EKF method also provided a satisfactory target velocity with an accuracy of 0.4m/s. In
Figure 13c, the curve of the estimated target accelerations tracked the measured at well but the
RMS errors of at were slightly noisy. However, the results were reliable for the control algorithm.

6.1.2. Simulation for capture control
In order to verify the random capture performance of the proposed modified PD algorithm and
find the optimal intercept trajectory, we selected four different initial locations for the pursuer.
Monte Carlo technique (AIAA, 1990; Yan and Shu, 2005) was introduced to statistically examine
the control accuracy of the proposed method. Each case has performed 50 simulation runs in the
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Figure 12. Predicted target trajectory of simulation.

(a) Estimated Pt (b) Estimated Vt (c) Estimated at

(d) RMS error of estimated Xt (e) RMS error of estimated Vt (f) RMS error of estimated at

Figure 13. The estimation results of target state.

simulation environment. Spherical Error Probability (SEP) is introduced to evaluate the accuracy
of the three-dimensional impact points (Tian-li and Wei-lian, 2006). The mean energy consumption
J = 1

2
∫ tf
t
a2
c(τ)dτ and capture time consuming Tg are also utilized to find the optimal control

trajectory.
The capture trajectories of four cases in horizontal plane were depicted in Figure 14. All the

four locations realized interception with the maneuvering target, and the three-dimensional control
accuracies were all below 0.3m. The control performance of each initial location in Table 2 also
suggested that location B was the optimal starting position for capture phase due to the least
energy consumption and shortest interception time. Thus, we chose location B as the hovering
position to search for the target. With the help of the EOP search method, the camera can detect
the target no matter which direction the target is flying from.
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Figure 14. The capture trajectories of different pursuer initial locations.

Table 2. Control performance of different pursuer initial locations.
Case initial location(m) SEP Jmean Tg

A (10,10,5) 0.1345 851.80 19.4
B (10,0,5) 0.1276 656.03 12.06
C (30,10,5) 0.2839 603.45 9.58
D (40,0,5) 0.2038 878.36 18.42

6.2. Flight experiment
The scenario in this section was designed based on the challenge I of MBZIRC 2020. Thus, the
mission was capturing the 13cm ball hung below the target drone. Referring to the maximum SEP
results of 0.3m in Table 2, we designed a grabbing mechanism (Figure 3) which can release the
control accuracy requirement to 0.8m. The DJI F-450 multicopter acted as the target and moved
following the trajectory in Equation 27. DJI M-210 multicopter was utilized to control the flight
of the F450 drone. The target position, velocity and acceleration can be measured by the onboard
IMU of DJI F-450. Both the measured accuracy of the target position and velocity were below 0.5m.
The target acceleration was measured with noise of 1m/s2, so we conducted a low-pass filter to the
measured at.

According to the analysis of Table 2 in simulation part, the pursuer was hovering at location B
and rotating the EOP to search target. When the pursuer detected the target and state estimation
converged, the multicopter would start to track the target. For our flight platform, the control gains
of velocity term were selected as 3.6, which matched the values in the simulation case. Considering
the wind disturbance, the position gains for flight experiment could be slightly bigger than 1.6 of
the simulation. The acceleration gains were tuned to 0.6.

The measurements during the capture phase were presented in Figure 15. The relative distance
(Figure 15a) was stably obtained from the onboard visual algorithm. With the help of the grabbing
device, the pursuer caught the target ball when the depth reached 0.384m. The measured yaw LOS
angle (Figure 15b) and angular rate (Figure 15c) oscillated after 9 seconds, which is because the
slight movement of the suspended target ball will cause a large change in the LOS information when
approaching the target. The pitch LOS angle line converged to zero at t = 4s indicates that the
capture mechanism installed on the pursuer pointed towards the target ball.

The real-time estimated target motion states during the capture phase were presented in
Figure 16. The estimated relative position in (Figure 16a) showed a good accuracy, which was
consistent with the simulation results. The deviation of all the results before 2 seconds were slightly
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(a) Measured distance (b) Measured LOS angles (c) Measured LOS angular rate

Figure 15. Measurments for EKF.

(a) Estimated Pt (b) Estimated Vt (c) Estimated at

Figure 16. The estimation results of target state.

larger, because the distance detection accuracy was relatively large when the target is far away. The
comparison of the predicted (black dotted line) and measured target trajectory (blue dotted line) in
Figure 17b also illustrated the phenomenon. The acceleration curves (Figure 16c) appeared obvious
oscillations in the end due to the divergence of LOS angular rate. To avoid the control commands
for the pursuer oscillating due to the estimated target acceleration, we performed a low-pass filter
on the acceleration commands.

Figure 17a showed a capture picture of this flight experiment. As shown in the capture trajectory
in Figure 17b, the pursuer realized the interception in the middle straight-line segment, which
corresponds to the small acceleration stage in Figure 16c. Thus, this stage is extremely good for
grabbing the target ball. In Figure 18a and 18b, we can find that the relative position and velocity
error finally converged to zero. Due to the compensation of the estimated at, the proposed control
algorithm made full use of the pursuer’s overload performance in the initial segment, thus it can
finally chase the target in a straight trajectory. The phenomenon was also verified in Figure 18c.

The lateral acceleration command acy reached the maximum limit value of 7m/s2 before 5
seconds, and then gradually converged. In addition, the boundary constraint was not met due
to the good tracking performance of the proposed control algorithm. We have conducted numerous
flight experiments at different times and scenes, the capture performance for each time was good.
Flight videos are available at https://b23.tv/Y0qFN1.

6.3. Control performance in MBZIRC2020
Basing on the DJI M210 platform, our control system was applied to challenge I of the final MBZIRC
2020 competition. We successfully finished the whole mission within two minutes and 40 seconds.
Figure 19 shows the photos of our performance during the competition. Related video of the capture
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(a) Capture picture of the flight experiment
(b) 3D tracking trajectory

Figure 17. Outdoor capture experiment.

(a) Relative position (b) Relative velocity (c) Acceleration commands

Figure 18. Motion states of the capture phase.

(a) Detecting the target by vision algorithm
(b) The moment of capturing the ball

Figure 19. The capture moment in MBZIRC competition.

process is available at https://b23.tv/TQGWUZ. We were the only team which completed all tasks
autonomously in the shortest time. As a result, we won the championship of challenge I in MBZIRC
2020(Figure 20). This success of our team has also developed a significant approach for the aerial
safety protection in urban environments.
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Figure 20. Award photo of our team.

7. Conclusion
In this paper, we present an autonomous navigation and control system for capturing a moving
drone target. The vision-based navigation component seeks and detects the intruding drone, then
three information sources, namely including the onboard vision algorithm, electro-optical pod, and
inertial measurement units are fused to predict the target trajectory in real time. Both the simulation
and the outdoor flight experiments have verified that our prediction method can estimate the
target’s trajectory with the accuracy of 0.5m, and it can also reliably estimate the target’s velocity
and acceleration. Thus, the precise relative motion information is obtained and fed to the control
algorithm.

The capture performance of the proposed modified PD algorithm has been studied both in
hardware-in-the-loop simulation and flight experiments. The results we obtained from the Monte
Carlo simulation show a three-dimensional capture accuracy below 0.3m for varied starting locations.
The simulation gives a good suggestion for the optimal capture trajectory. Then the flight experiment
verified that the proposed modified PD algorithm can accurately intercept a moving target by
compensating for the estimated target acceleration. It has also been demonstrated the considerable
efficiency and robustness in the ball-capture mission of MBZIRC Challenge, in which the task is
more difficult than capturing the drone itself.

8. Lessons learned and future research
The proposed navigation and control system autonomously and successfully finished the mission in
Challenge I of MBZIRC 2020, whose performance has demonstrated our design’s value. However,
considering the motivation of Challenge I in MBZIRC 2020, we still need to improve our key
performance criteria due to the following aspects. The proposed target prediction method relies
on the target size, which is known in the competition. However, we can hardly know the type and
size of the invading target. Thus, the versatility of the vision perception and estimation method
needs to be improved. Additionally, optimal control algorithms for intercepting the target with
random maneuver modes should be studied. The control energy and time are key performance due
to the limited endurance capability of drones.

We have learned numerous lessons from MBZIRC 2020 and identified several techniques to
improve. In the future research, we will continue to study a cost-effective navigation and control
system against invading drones and aerial security maintenance.
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